Exam — Introduction to Optimization (WMMA054-05)

Thursday, November 11, 2022, 08.30h–10.30h University of Groningen

Instructions

- 1. Except for the official *cheat sheet*, the use of books or notes is not allowed.
- 2. Justify all your answers.
- 3. Write both your last name and student number on the answer sheets.
- 4. The exam grade is the number of marks plus 1. Use your time wisely.

Let let $C \subset \mathbb{R}^N$ be nonempty, convex and compact (closed and bounded). This part concerns $(\mathcal{P}_1) \qquad \min \{ a \cdot z : z \in C \},$

where $a \in \mathbb{R}^N$.

1. Show that, for every $a \in \mathbb{R}^N$, (\mathcal{P}_1) has at least one solution. [1p]

The function $\phi : \mathbb{R}^N \to \mathbb{R}$, defined by $\phi(z) = a \cdot z$, is continuous, and C is compact.

- 2. Set $f(z) = \iota_C(z)$ and $g(z) = a \cdot z$.
 - (a) Compute f^* and g^* , and determine the (Fenchel-Rockafellar) dual of (\mathcal{P}_1) . Observe that there is no duality gap. [1p]

We saw in class that $f^*(y) = \sup\{y \cdot z : z \in C\}$ and $g^*(y) = \iota_{\{a\}}(y)$. The dual is $\min_{y \in \mathbb{R}^N} \{f^*(-y) + g^*(y)\} = \min_{y \in \mathbb{R}^N} \{\sup\{-y \cdot z : z \in C\} : y = a\} = \sup\{-y \cdot z : z \in C\}.$ Changing sup to inf and using 1, this is $-\min\{y \cdot z : z \in C\}$. Clearly, $\alpha + \alpha^* = 0$.

(b) Show that the primal-dual method is reduced to the projected gradient method. [1p]

Each iteration of the primal-dual method is given by $x_{k+1} = \operatorname{Proj}_C(x_k - \tau y_k)$ and $y_{k+1} = \operatorname{Proj}_{\{a\}}(y_k + \sigma(2x_{k+1} - x_k)) = a$, which gives $x_{k+1} = \operatorname{Proj}_C(x_k - \tau a)$. This is the same as the projected gradient method because $\nabla g(x) \equiv a$.

[1p]

3. Write the first-order optimality condition for (\mathcal{P}_1) .

Since ϕ is convex and $\nabla \phi(z) \equiv a$, Fermat's Rule says that \hat{x} is a solution if, and only if, $a \cdot (c - \hat{x}) \leq 0$ for all $c \in C$.

Now let $f : \mathbb{R}^N \to \mathbb{R}$ be convex and L-smooth, and let us analyze the convergence of the following algorithm to approximate

Starting with $x_0 \in C$, define a sequence (x_k, y_k) inductively by

$$\begin{cases} y_k \in \operatorname{argmin} \{ \nabla f(x_k) \cdot z : z \in C \} \\ \gamma_k = \operatorname{argmin} \{ f(x_k + \gamma(y_k - x_k)) : \gamma \in [0, 1] \} \\ x_{k+1} = x_k + \gamma_k(y_k - x_k) \end{cases}$$

for $k \geq 1$.

4. Verify that $x_k \in C$ for all $k \ge 0$.

Induction: $x_0 \in C$. Now, suppose $x_k \in C$. Since $y_k \in C$, C is convex and x_{k+1} is a convex combination of x_k and y_k , $x_{k+1} \in C$.

[1p]

5. For each $k \ge 1$ and $\gamma \in [0, 1]$, set $z_k(\gamma) = x_k + \gamma(y_k - x_k)$. Show that $f(x_{k+1}) \le f(z_k(\gamma))$. Deduce that $f(x_{k+1}) \le f(x_k)$. [1p]

It is immediate from the definitions.

6. Prove that there is a constant $D \ge 0$ such that

$$f(x_{k+1}) - \hat{f} \le (1 - \gamma) \left(f(x_k) - \hat{f} \right) + \gamma^2 D$$

for all $\gamma \in [0, 1]$ and $k \ge 1$. [1p]

Suggestion: (1) Use question 5 and the Descent Lemma; (2) Which sets have finite diameter?

From the Descent Lemma, we have

$$f(z_{k}(\gamma)) \leq f(x_{k}) + \nabla f(x_{k}) \cdot (z_{k}(\gamma) - x_{k}) + \frac{L}{2} ||z_{k}(\gamma) - x_{k}||^{2}$$

= $f(x_{k}) + \gamma \nabla f(x_{k}) \cdot (y_{k} - x_{k}) + \frac{\gamma^{2}L}{2} ||y_{k} - x_{k}||^{2}$

Let \hat{x} minimize f on C (f is continuous and C is compact). By the definition of y_k , $\nabla f(x_k) \cdot y_k \leq \nabla f(x_k) \cdot \hat{x}$. Using this, along with 5 and the convexity of f, we obtain

$$f(x_{k+1}) \leq f(x_k) + \gamma \nabla f(x_k) \cdot (\hat{x} - x_k) + \frac{\gamma^2 L}{2} \|y_k - x_k\|^2$$

$$\leq f(x_k) + \gamma \left(\hat{f} - f(x_k)\right) + \frac{\gamma^2 L}{2} \|y_k - x_k\|^2.$$

Finally, since y_k and x_k belong to C, which is bounded, we have

$$||y_k - x_k|| \le \operatorname{diam}(C) := \sup \{||u - v|| : u, v \in C\} < \infty.$$

Writing $D = \frac{L}{2} \operatorname{diam}(C)^2$, we obtain

$$f(x_{k+1}) \le f(x_k) + \gamma \left(\hat{f} - f(x_k)\right) + \gamma^2 D.$$

It suffices to subtract \hat{f} on both sides and rearrange the terms to conclude.

7. For each k, substitute $\gamma = \frac{2}{k+2}$ in the preceding inequality to deduce that

$$(k+2)^2 (f(x_{k+1}) - \hat{f}) \le (k+1)^2 (f(x_k) - \hat{f}) + 4D.$$

Do this for each k to show that

$$f(x_k) - \hat{f} \le \frac{4D}{k+1}$$
[1p]

for all $k \geq 1$.

With the substitution, and multiplying by $(k+1)^2$, we obtain

$$(k+2)^2 (f(x_{k+1}) - \hat{f}) \leq k(k+2) (f(x_k) - \hat{f}) + 4D \leq (k+1)^2 (f(x_k) - \hat{f}) + 4D.$$

Summing from 0 to k-1, and using the telescopic property, we deduce that

$$(k+1)^2 (f(x_k) - f) \le f(x_0) - f + 4Dk.$$

Since $f(x_0) - \hat{f} \leq D$, a rough bound for the right-hand side is 4D(k+1).

8. Given $\varepsilon > 0$, how many iterations of this method give you the certainty that you have found a point $\hat{x} \in C$ such that $f(\hat{x}) \leq \hat{f} + \varepsilon$? [1p]

Let K be the first positive integer greater than, or equal to, $4D\varepsilon^{-1} - 1$. Then

$$f(x_K) - \hat{f} \le \frac{4D}{K+1} \le \varepsilon.$$

Of course, any integer greater than K would do as well.